Jack CR Jr., Bennett DA, Blennow Okay, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, et al. NIA-AA Analysis Framework: towards a organic definition of Alzheimer’s illness. Alzheimers Dement. 2018;14(4):535–62.
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Delicate cognitive impairment: scientific characterization and final result. Arch Neurol. 1999;56(3):303–8.
Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie Okay, Rossor M, Thal L, Winblad B. Present ideas in gentle cognitive impairment. Arch Neurol. 2001;58(12):1985–92.
Goldman WP, Morris JC. Proof that age-associated reminiscence impairment just isn’t a standard variant of growing old. Alzheimer Dis Assoc Disord. 2001;15(2):72–9.
Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, et al. Analysis standards for the analysis of Alzheimer’s illness: revising the NINCDS-ADRDA standards. Lancet Neurol. 2007;6(8):734–46.
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, et al. The analysis of gentle cognitive impairment resulting from Alzheimer’s illness: suggestions from the Nationwide Institute on Getting old-Alzheimer’s Affiliation workgroups on diagnostic tips for Alzheimer’s illness. Alzheimers Dement. 2011;7(3):270–9.
Vos SJ, Verhey F, Frölich L, Kornhuber J, Wiltfang J, Maier W, Peters O, Rüther E, Nobili F, Morbelli S, et al. Prevalence and prognosis of Alzheimer’s illness on the gentle cognitive impairment stage. Mind. 2015;138(Pt 5):1327–38.
Wang PN, Liu HC, Lin KN. The MCI research in Taiwan. Acta Neurol Taiwan. 2006;15:66–8.
Vemuri P, Weigand SD, Knopman DS, Kantarci Okay, Boeve BF, Petersen RC, Jack CR Jr. Time-to-event voxel-based methods to evaluate regional atrophy related to MCI threat of development to AD. NeuroImage. 2011;54(2):985–91.
Ossenkoppele R, Pichet Binette A, Groot C, Smith R, Strandberg O, Palmqvist S, Stomrud E, Tideman P, Ohlsson T, Jögi J et al. Amyloid and tau PET-positive cognitively unimpaired people are at excessive threat for future cognitive decline.
Jack CR Jr., Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ. Hypothetical mannequin of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–28.
Karran E, Mercken M, De Strooper B. The amyloid cascade speculation for Alzheimer’s illness: an appraisal for the event of therapeutics. Nat Rev Drug Discov. 2011;10(9):698–712.
Knopman DS, Jack CR Jr., Wiste HJ, Weigand SD, Vemuri P, Lowe VJ, Kantarci Okay, Gunter JL, Senjem ML, Mielke MM, et al. Mind harm biomarkers usually are not depending on β-amyloid in regular aged. Ann Neurol. 2013;73(4):472–80.
Mormino EC, Betensky RA, Hedden T, Schultz AP, Amariglio RE, Rentz DM, Johnson KA, Sperling RA. Synergistic impact of β-amyloid and neurodegeneration on cognitive decline in clinically regular people. JAMA Neurol. 2014;71(11):1379–85.
Furst AJ, Lal RA. Amyloid-beta and glucose metabolism in Alzheimer’s illness. J Alzheimers Dis. 2011;26(Suppl 3):105–16.
Frings L, Spehl TS, Weber WA, Hull M, Meyer PT. Amyloid-beta load predicts medial temporal lobe dysfunction in Alzheimer dementia. J Nucl Med. 2013;54(11):1909–14.
Tiepolt S, Patt M, Hoffmann KT, Schroeter ML, Sabri O, Barthel H. Alzheimer’s Illness FDG PET Imaging Sample in an amyloid-negative gentle cognitive impairment topic. J Alzheimers Dis. 2015;47(3):539–43.
Frings L, Hellwig S, Bormann T, Spehl TS, Buchert R, Meyer PT. Amyloid load however not regional glucose metabolism predicts conversion to Alzheimer’s dementia in a reminiscence clinic inhabitants. Eur J Nucl Med Mol Imaging. 2018;45(8):1442–8.
Pascoal TA, Mathotaarachchi S, Shin M, Park AY, Mohades S, Benedet AL, Kang MS, Massarweh G, Soucy JP, Gauthier S, et al. Amyloid and tau signatures of mind metabolic decline in preclinical Alzheimer’s illness. Eur J Nucl Med Mol Imaging. 2018;45(6):1021–30.
Lerch JP, Evans AC. Cortical thickness evaluation examined by means of energy evaluation and a inhabitants simulation. NeuroImage. 2005;24(1):163–73.
Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, Petersen RC, Shaw LM, Trojanowski JQ, Jack CR Jr, et al. Evaluating predictors of conversion and decline in gentle cognitive impairment. Neurology. 2010;75(3):230–8.
Morbelli S, Piccardo A, Villavecchia G, Dessi B, Brugnolo A, Piccini A, Caroli A, Frisoni G, Rodriguez G, Nobili F. Mapping mind morphological and practical conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET research. Eur J Nucl Med Mol Imaging. 2010;37(1):36–45.
Herholz Okay, Westwood S, Haense C, Dunn G. Analysis of a calibrated (18)F-FDG PET rating as a biomarker for development in Alzheimer illness and gentle cognitive impairment. J Nucl Med. 2011;52(8):1218–26.
Brück A, Virta JR, Koivunen J, Koikkalainen J, Scheinin NM, Helenius H, Någren Okay, Helin S, Parkkola R, Viitanen M, et al. [11 C]PIB, [18F]FDG and MR imaging in sufferers with gentle cognitive impairment. Eur J Nucl Med Mol Imaging. 2013;40(10):1567–72.
Hatashita S, Yamasaki H. Identified gentle cognitive impairment resulting from Alzheimer’s illness with PET biomarkers of beta amyloid and neuronal dysfunction. PLoS ONE. 2013;8(6):e66877.
Ito Okay, Fukuyama H, Senda M, Ishii Okay, Maeda Okay, Yamamoto Y, Ouchi Y, Ishii Okay, Okumura A, Fujiwara Okay, et al. Prediction of outcomes in gentle cognitive impairment through the use of 18F-FDG-PET: a Multicenter Examine. J Alzheimers Dis. 2015;45(2):543–52.
Iaccarino L, Chiotis Okay, Alongi P, Almkvist O, Wall A, Cerami C, Bettinardi V, Gianolli L, Nordberg A, Perani D. A cross-validation of FDG- and Amyloid-PET biomarkers in gentle cognitive impairment for the chance prediction to Dementia resulting from Alzheimer’s Illness in a scientific setting. J Alzheimers Dis. 2017;59(2):603–14.
Pagani M, Nobili F, Morbelli S, Arnaldi D, Giuliani A, Öberg J, Girtler N, Brugnolo A, Picco A, Bauckneht M, et al. Early identification of MCI changing to AD: a FDG PET research. Eur J Nucl Med Mol Imaging. 2017;44(12):2042–52.
Devanand DP, Pradhaban G, Liu X, Khandji A, De Santi S, Segal S, Rusinek H, Pelton GH, Honig LS, Mayeux R, et al. Hippocampal and entorhinal atrophy in gentle cognitive impairment: prediction of Alzheimer illness. Neurology. 2007;68(11):828–36.
Desikan RS, Cabral HJ, Settecase F, Hess CP, Dillon WP, Glastonbury CM, Weiner MW, Schmansky NJ, Salat DH, Fischl B. Automated MRI measures predict development to Alzheimer’s illness. Neurobiol Getting old. 2010;31(8):1364–74.
Gomar JJ, Bobes-Bascaran MT, Conejero-Goldberg C, Davies P, Goldberg TE. Utility of combos of biomarkers, cognitive markers, and threat components to foretell conversion from gentle cognitive impairment to Alzheimer illness in sufferers within the Alzheimer’s illness neuroimaging initiative. Arch Gen Psychiatry. 2011;68(9):961–9.
Prestia A, Caroli A, Herholz Okay, Reiman E, Chen Okay, Jagust WJ, Frisoni GB. Diagnostic accuracy of markers for prodromal Alzheimer’s illness in impartial scientific sequence. Alzheimers Dement. 2013;9(6):677–86.
Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A sensible technique for grading the cognitive state of sufferers for the clinician. J Psychiatr Res. 1975;12(3):189–98.
Teng EL, Hasegawa Okay, Homma A, Imai Y, Larson E, Graves A, Sugimoto Okay, Yamaguchi T, Sasaki H, Chiu D, et al. The cognitive talents screening instrument (CASI): a sensible take a look at for cross-cultural epidemiological research of dementia. Int Psychogeriatr. 1994;6(1):45–58. dialogue 62.
Morris JC. The scientific dementia ranking (CDR): present model and scoring guidelines. Neurology. 1993;43(11):2412–4.
Pezzotti P, Scalmana S, Mastromattei A, Di Lallo D., the Progetto Alzheimer Working G: the accuracy of the MMSE in detecting cognitive impairment when administered by basic practitioners: A potential observational research.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM utilizing a macroscopic anatomical parcellation of the MNI MRI single-subject mind. NeuroImage. 2002;15(1):273–89.
Kato T, Inui Y, Nakamura A, Ito Okay. Mind fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev. 2016;30:73–84.
Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, Gilardi MC, Frisoni G, Friston Okay, Ashburner J, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12(4):575–93.
Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, Panzacchi A, Nobili F, Pappata S, Marcone A, et al. Validation of an optimized SPM process for FDG-PET in dementia analysis in a scientific setting. Neuroimage Clin. 2014;6:445–54.
Greve DN, Fischl B. False optimistic charges in surface-based anatomical evaluation. NeuroImage. 2018;171:6–14.
Herholz Okay, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, Schönknecht P, Ito Okay, Mielke R, Kalbe E, et al. Discrimination between Alzheimer dementia and controls by automated evaluation of multicenter FDG PET. NeuroImage. 2002;17(1):302–16.
Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr., Kaye J, Montine TJ, et al. Towards defining the preclinical levels of Alzheimer’s illness: suggestions from the Nationwide Institute on Getting old-Alzheimer’s Affiliation workgroups on diagnostic tips for Alzheimer’s illness. Alzheimers Dement. 2011;7(3):280–92.
Arnáiz E, Jelic V, Almkvist O, Wahlund LO, Winblad B, Valind S, Nordberg A. Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in gentle cognitive impairment. NeuroReport. 2001;12(4):851–5.
Chételat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Delicate cognitive impairment: Can FDG-PET predict who’s to quickly convert to Alzheimer’s illness? Neurology 2003, 60(8):1374–7.
Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, Minoshima S, Schwaiger M, Kurz A. Prediction of particular person scientific final result in MCI by way of genetic evaluation and (18)F-FDG PET. J Nucl Med. 2005;46(10):1625–32.
Fellgiebel A, Scheurich A, Bartenstein P, Müller MJ. FDG-PET and CSF phospho-tau for prediction of cognitive decline in gentle cognitive impairment. Psychiatry Res. 2007;155(2):167–71.
Galluzzi S, Geroldi C, Ghidoni R, Paghera B, Amicucci G, Bonetti M, Zanetti O, Cotelli M, Gennarelli M, Frisoni GB. The brand new Alzheimer’s standards in a naturalistic sequence of sufferers with gentle cognitive impairment. J Neurol. 2010;257(12):2004–14.
Prestia A, Caroli A, Wade SK, van der Flier WM, Ossenkoppele R, Van Berckel B, Barkhof F, Teunissen CE, Wall A, Carter SF, et al. Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic standards in MCI sufferers from three European reminiscence clinics. Alzheimers Dement. 2015;11(10):1191–201.
Grimmer T, Wutz C, Alexopoulos P, Drzezga A, Förster S, Förstl H, Goldhardt O, Ortner M, Sorg C, Kurz A. Visible Versus absolutely automated analyses of 18F-FDG and amyloid PET for prediction of Dementia resulting from Alzheimer Illness in gentle cognitive impairment. J Nucl Med. 2016;57(2):204–7.
Perani D, Cerami C, Caminiti SP, Santangelo R, Coppi E, Ferrari L, Pinto P, Passerini G, Falini A, Iannaccone S, et al. Cross-validation of biomarkers for the early differential analysis and prognosis of dementia in a scientific setting. Eur J Nucl Med Mol Imaging. 2016;43(3):499–508.
Caminiti SP, Ballarini T, Sala A, Cerami C, Presotto L, Santangelo R, Fallanca F, Vanoli EG, Gianolli L, Iannaccone S, et al. FDG-PET and CSF biomarker accuracy in prediction of conversion to completely different dementias in a big multicentre MCI cohort. Neuroimage Clin. 2018;18:167–77.
Sörensen A, Blazhenets G, Rücker G, Schiller F, Meyer PT, Frings L. Prognosis of conversion of gentle cognitive impairment to Alzheimer’s dementia by voxel-wise Cox regression based mostly on FDG PET knowledge. Neuroimage Clin. 2019;21:101637.
Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, De Santi S, Reisberg B, Wisniewski T, et al. FDG-PET modifications in mind glucose metabolism from regular cognition to pathologically verified Alzheimer’s illness. Eur J Nucl Med Mol Imaging. 2009;36(5):811–22.
Smailagic N, Lafortune L, Kelly S, Hyde C, Brayne C. 18F-FDG PET for prediction of Conversion to Alzheimer’s Illness Dementia in folks with gentle cognitive impairment: an up to date systematic overview of Check Accuracy. J Alzheimers Dis. 2018;64(4):1175–94.
Iaccarino L, Sala A, Perani D. Predicting long-term scientific stability in amyloid-positive topics by FDG-PET. Ann Clin Transl Neurol. 2019;6(6):1113–20.
Chang YL, Bondi MW, Fennema-Notestine C, McEvoy LK, Hagler DJ Jr., Jacobson MW, Dale AM. Mind substrates of studying and retention in gentle cognitive impairment analysis and development to Alzheimer’s illness. Neuropsychologia. 2010;48(5):1237–47.
Gainotti G, Quaranta D, Vita MG, Marra C. Neuropsychological predictors of conversion from gentle cognitive impairment to Alzheimer’s illness. J Alzheimers Dis. 2014;38(3):481–95.
Schmand B, Eikelenboom P, van Gool WA. Worth of neuropsychological assessments, neuroimaging, and biomarkers for diagnosing Alzheimer’s illness in youthful and older age cohorts. J Am Geriatr Soc. 2011;59(9):1705–10.
Schmand B, Eikelenboom P, van Gool WA. Worth of diagnostic assessments to foretell conversion to Alzheimer’s illness in younger and outdated sufferers with amnestic gentle cognitive impairment. J Alzheimers Dis. 2012;29(3):641–8.
Yu P, Dean RA, Corridor SD, Qi Y, Sethuraman G, Willis BA, Siemers ER, Martenyi F, Tauscher JT, Schwarz AJ. Enriching amnestic gentle cognitive impairment populations for scientific trials: optimum mixture of biomarkers to foretell conversion to dementia. J Alzheimers Dis. 2012;32(2):373–85.
Trzepacz PT, Yu P, Solar J, Schuh Okay, Case M, Witte MM, Hochstetler H, Hake A. Comparability of neuroimaging modalities for the prediction of conversion from gentle cognitive impairment to Alzheimer’s dementia. Neurobiol Getting old. 2014;35(1):143–51.
Sanchez-Catasus CA, Stormezand GN, van Laar PJ, De Deyn PP, Sanchez MA, Dierckx RA. FDG-PET for prediction of AD dementia in gentle cognitive impairment. A overview of the state-of-the-art with Explicit emphasis on the comparability with different Neuroimaging modalities (MRI and perfusion SPECT). Curr Alzheimer Res. 2017;14(2):127–42.
Dukart J, Mueller Okay, Villringer A, Kherif F, Draganski B, Frackowiak R, Schroeter ML. Relationship between imaging biomarkers, age, development and symptom severity in Alzheimer’s illness. Neuroimage Clin. 2013;3:84–94.
Becker JT, Mintun MA, Aleva Okay, Wiseman MB, Nichols T, DeKosky ST. Compensatory reallocation of mind sources supporting verbal episodic reminiscence in Alzheimer’s illness. Neurology. 1996;46(3):692–700.
Clément F, Belleville S. Compensation and illness severity on the memory-related activations in gentle cognitive impairment. Biol Psychiatry. 2010;68(10):894–902.
Ashraf A, Fan Z, Brooks DJ, Edison P. Cortical hypermetabolism in MCI topics: a compensatory mechanism? Eur J Nucl Med Mol Imaging. 2015;42:447–58.
Chételat G, Arbizu J, Barthel H, Garibotto V, Regulation I, Morbelli S, van de Giessen E, Agosta F, Barkhof F, Brooks DJ, et al. Amyloid-PET and (18)F-FDG-PET within the diagnostic investigation of Alzheimer’s illness and different dementias. Lancet Neurol. 2020;19(11):951–62.
Ossenkoppele R, Pichet Binette A, Groot C, Smith R, Strandberg O, Palmqvist S, Stomrud E, Tideman P, Ohlsson T, Jögi J, et al. Amyloid and tau PET-positive cognitively unimpaired people are at excessive threat for future cognitive decline. Nat Med. 2022;28(11):2381–7.