Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. International most cancers statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71(3):209–49.
Machackova T, Prochazka V, Kala Z, Slaby O. Translational potential of micrornas for preoperative staging and prediction of chemoradiotherapy response in rectal most cancers. Cancers. 2019;11(10):E1545.
Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier AM. Epidemiology and administration of liver metastases from colorectal most cancers. Ann Surg. 2006;244(2):254–9.
Valderrama-Treviño AI, Barrera-Mera B, Ceballos-Villalva JC, Montalvo-Javé EE. Hepatic metastasis from Colorectal Most cancers. Euroasian J Hepato-Gastroenterol. 2017;7(2):166–75.
Bos JL. Ras oncogenes in human most cancers: a assessment. Most cancers Res. 1989;49(17):4682–9.
Bruera G, Cannita Okay, Di Giacomo D, Lamy A, Troncone G, Dal Mas A, et al. Prognostic worth of KRAS genotype in metastatic colorectal most cancers (MCRC) sufferers handled with intensive triplet chemotherapy plus bevacizumab (FIr-B/FOx) in keeping with extension of metastatic illness. BMC Med. 2012;10(1):135.
Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, et al. Non-V600BRAF MutadefineDefclinicallyidistinctsmolecularesubtypeubtymetastaticscolorectalrcancerCancer. J Clin Oncol. 2017;35(23):2624–30.
Fanelli GN, Dal Pozzo CA, Depetris I, Schirripa M, Brignola S, Biason P, et al. The heterogeneous scientific and pathological landscapes of metastatic braf-mutated colorectal most cancers. Most cancers Cell Int. 2020;20(1):30.
Mao W, Zhou J, Zhang H, Qiu L, Tan H, Hu Y, et al. Relationship between KRAS mutations and twin time level 18F-FDG PET/CT imaging in colorectal liver metastases. Abdom Radiol N Y. 2019;44(6):2059–66.
Modest DP, Ricard I, Heinemann V, Hegewisch-Becker S, Schmiegel W, Porschen R, et al. Consequence in keeping with KRAS-, NRAS- and BRAF-mutation in addition to KRAS mutation variants: pooled evaluation of 5 randomized trials in metastatic colorectal most cancers by the AIO colorectal most cancers research group. Ann Oncol. 2016;27(9):1746–53.
Souglakos J, Philips J, Wang R, Marwah S, Silver M, Tzardi M, et al. Prognostic and predictive worth of widespread mutations for therapy response and survival in sufferers with metastatic colorectal most cancers. Br J Most cancers. 2009;101(3):465–72.
Zilkens C, Miese F, Herten M, Kurzidem S, Jäger M, König D, et al. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically managed research. Eur J Radiol. 2013;82(2):e81–86.
Chandrasekar V, Ansari MY, Singh AV, Uddin S, Prabhu KS, Sprint S, et al. Investigating the Use of Machine Studying fashions to grasp the medicine permeability throughout Placenta. IEEE Entry. 2023;11:52726–39.
Ansari MY, Qaraqe M, Charafeddine F, Serpedin E, Righetti R, Qaraqe Okay. Estimating age and gender from electrocardiogram indicators: a complete assessment of the previous decade. Artif Intell Med. 2023;146:102690.
Ansari MY, Yang Y, Meher PK, Dakua SP. Dense-PSP-UNet: a neural community for quick inference liver ultrasound segmentation. Comput Biol Med. 2023;153:106478.
Ansari MY, Yang Y, Balakrishnan S, Abinahed J, Al-Ansari A, Warfa M, et al. A light-weight neural community with multiscale function enhancement for liver CT segmentation. Sci Rep. 2022;12(1):14153.
Ansari MY, Abdalla A, Ansari MY, Ansari MI, Malluhi B, Mohanty S, et al. Sensible utility of liver segmentation strategies in scientific surgical procedures and interventions. BMC Med Imaging. 2022;22(1):97.
Rai P, Ansari MY, Warfa M, Al-Hamar H, Abinahed J, Barah A, et al. Efficacy of fusion imaging for rapid post-ablation evaluation of malignant liver neoplasms: a scientific assessment. Most cancers Med. 2023;12(13):14225–51.
Gillies RJ, Kinahan PE, Hricak H. Radiomics: pictures are greater than photos, they’re information. Radiology. 2016;278(2):563–77.
Fusco R, Granata V, Petrillo A. Introduction to Particular Subject of Radiology and Imaging of Most cancers. Cancers. 2020;12(9):E2665.
Kim SJ, Pak Okay, Kim Okay. Diagnostic efficiency of F-18 FDG PET/CT for prediction of KRAS mutation in colorectal most cancers sufferers: a scientific assessment and meta-analysis. Abdom Radiol. 2019;44(5):1703–11.
Dai D, Wang Y, Zhu L, Jin H, Wang X. Prognostic worth of KRAS mutation standing in colorectal most cancers sufferers: a population-based competing danger evaluation. PeerJ. 2020;8:e9149.
Shi R, Chen W, Yang B, Qu J, Cheng Y, Zhu Z, et al. Prediction of KRAS, NRAS and BRAF standing in colorectal most cancers sufferers with liver metastasis utilizing a deep synthetic neural community based mostly on radiomics and semantic options. Am J Most cancers Res. 2020;10(12):4513–26.
Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Growth and validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Most cancers. J Clin Oncol off J Am Soc Clin Oncol. 2016;34(18):2157–64.
Reichling C, Taieb J, Derangere V, Klopfenstein Q, Le Malicot Okay, Gornet JM, et al. Synthetic intelligence-guided tissue evaluation mixed with immune infiltrate evaluation predicts stage III colon most cancers outcomes in PETACC08 research. Intestine. 2020;69(4):681–90.
Muthukrishnan R, Rohini R. LASSO: A function choice method in predictive modeling for machine studying. In: 2016 IEEE Worldwide Convention on Advances in Laptop Functions (ICACA) [Internet]. Coimbatore, India: IEEE; 2016 [cited 2024 Sep 27]. p. 18–20. Accessible from: http://ieeexplore.ieee.org/doc/7887916/
Xue F, Yang L, Dai B, Xue H, Zhang L, Ge R, et al. Bioinformatics profiling identifies seven immune-related danger signatures for hepatocellular carcinoma. PeerJ. 2020;8:e8301.
Lubner MG, Stabo N, Lubner SJ, del Rio AM, Track C, Halberg RB, et al. CT textural evaluation of hepatic metastatic colorectal most cancers: pre-treatment tumor heterogeneity correlates with pathology and scientific outcomes. Abdom Imaging. 2015;40(7):2331–7.
Hutchins G, Southward Okay, Handley Okay, Magill L, Beaumont C, Stahlschmidt J, et al. Worth of mismatch restore, KRAS, and BRAF mutations in predicting recurrence and advantages from chemotherapy in colorectal most cancers. J Clin Oncol off J Am Soc Clin Oncol. 2011;29(10):1261–70.
Kim HS, Heo JS, Lee J, Lee JY, Lee MY, Lim SH, et al. The impression of KRAS mutations on prognosis in surgically resected colorectal most cancers sufferers with liver and lung metastases: a retrospective evaluation. BMC Most cancers. 2016;16(1):120.
Liu H, Zhang C, Wang L, Luo R, Li J, Zheng H, et al. MRI radiomics evaluation for predicting preoperative synchronous distant metastasis in sufferers with rectal most cancers. Eur Radiol. 2019;29(8):4418–26.
Chuang SC, Su YC, Lu CY, Hsu HT, Solar LC, Shih YL, et al. Danger elements for the event of metachronous liver metastasis in colorectal most cancers sufferers after healing resection. World J Surg. 2011;35(2):424–9.
Taghavi M, Trebeschi S, Simões R, Meek DB, Beckers RCJ, Lambregts DMJ, et al. Machine learning-based evaluation of CT radiomics mannequin for prediction of colorectal metachronous liver metastases. Abdom Radiol N Y. 2021;46(1):249–56.
Li Y, Eresen A, Shangguan J, Yang J, Lu Y, Chen D, et al. Institution of a brand new non-invasive imaging prediction mannequin for liver metastasis in colon most cancers. Am J Most cancers Res. 2019;9(11):2482–92.
Li M, Li X, Guo Y, Miao Z, Liu X, Guo S, et al. Growth and evaluation of an individualized nomogram to foretell colorectal most cancers liver metastases. Quant Imaging Med Surg. 2020;10(2):397–414.
Liang M, Cai Z, Zhang H, Huang C, Meng Y, Zhao L, et al. Machine Studying-based evaluation of rectal Most cancers MRI Radiomics for Prediction of Metachronous Liver Metastasis. Acad Radiol. 2019;26(11):1495–504.
Zhang Y, He Okay, Guo Y, Liu X, Yang Q, Zhang C, et al. A Novel Multimodal Radiomics Mannequin for Preoperative Prediction of Lymphovascular Invasion in rectal Most cancers. Entrance Oncol. 2020;10:457.
Zeng H, Chen L, Wang M, Luo Y, Huang Y, Ma X. Integrative radiogenomics evaluation for predicting molecular options and survival in clear cell renal cell carcinoma. Getting older. 2021;13(7):9960–75.
Li H, Chen XL, Liu H, Lu T, Li ZL. MRI-based multiregional radiomics for predicting lymph nodes standing and prognosis in sufferers with resectable rectal most cancers. Entrance Oncol. 2022;12:1087882.
Jhaveri KS, Hosseini-Nik H. MRI of rectal Most cancers: an outline and replace on current advances. AJR Am J Roentgenol. 2015;205(1):W42–55.
Lee S, Choe EK, Kim SY, Kim HS, Park KJ, Kim D. Liver imaging options by convolutional neural community to foretell the metachronous liver metastasis in stage I-III colorectal most cancers sufferers based mostly on preoperative belly CT scan. BMC Bioinformatics. 2020;21(Suppl 13):382.
Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in major colorectal adenocarcinomas and their corresponding metastases. Clin Most cancers Res off J Am Assoc Most cancers Res. 2010;16(3):790–9.