2.3 C
New York
Monday, January 27, 2025

Magnetic resonance cholangiopancreatography at 5.0 T: quantitative and qualitative comparability with 3.0 T | BMC Medical Imaging


  • Yoen H, Lee JM, Lee SM, et al. Comparisons between picture high quality and diagnostic efficiency of 2D- and breath-hold 3D magnetic resonance cholangiopancreatography at 3T. Eur Radiol. 2021;31(11):8399–407.

    Article 
    PubMed 

    Google Scholar
     

  • Griffin N, Yu D, Alexander Grant L. Magnetic resonance cholangiopancreatography: pearls, pitfalls, and pathology. Semin Ultrasound CT MR. 2013;34(1):32–43.

    Article 
    PubMed 

    Google Scholar
     

  • Sahni VA, Mortele KJ. Magnetic resonance cholangiopancreatography: present use and future purposes. Clin Gastroenterol Hepatol. 2008;6(9):967–77.

    Article 
    PubMed 

    Google Scholar
     

  • Hekimoglu Okay, Ustundag Y, Dusak A, et al. MRCP vs. ERCP within the analysis of biliary pathologies: assessment of present literature. J Dig Dis. 2008;9(3):162–9.

    Article 
    PubMed 

    Google Scholar
     

  • Itani M, Lalwani N, Anderson MA, Arif-Tiwari H, Paspulati RM, Shetty AS. Magnetic resonance cholangiopancreatography: pitfalls in interpretation. Abdom Radiol (NY). 2023;48(1):91–105.

    Article 
    PubMed 

    Google Scholar
     

  • Kaltenthaler E, Vergel YB, Chilcott J et al. A scientific assessment and financial analysis of magnetic resonance cholangiopancreatography in contrast with diagnostic endoscopic retrograde cholangiopancreatography. Well being Technol Assess. 2004. 8(10): iii, 1–89.

  • Buxbaum JL, Abbas Fehmi SM, Sultan S, et al. ASGE guideline on the position of endoscopy within the analysis and administration of choledocholithiasis. Gastrointest Endosc. 2019;89(6):1075–e110515.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Okay, Li X, Liu J, et al. Predicting the picture high quality of respiratory-gated and breath-hold 3D MRCP from the respiratory curve: a potential research. Eur Radiol. 2023;33(6):4333–43.

    Article 
    PubMed 

    Google Scholar
     

  • Park JE, Cheong EN, Jung DE, Shim WH, Lee JS. Utility of seven Tesla Magnetic Resonance Imaging in sufferers with Epilepsy: a scientific assessment and Meta-analysis. Entrance Neurol. 2021;12:621936.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giraudo C, Motyka S, Weber M, Feiweier T, Trattnig S, Bogner W. Diffusion Tensor Imaging of Wholesome Skeletal Muscle tissue: a comparability between 7 T and three T. Make investments Radiol. 2019;54(1):48–54.

    Article 
    PubMed 

    Google Scholar
     

  • Lecler A, Duron L, Charlson E, et al. Comparability between 7 Tesla and three Tesla MRI for characterizing orbital lesions. Diagn Interv Imaging. 2022;103(9):433–9.

    Article 
    PubMed 

    Google Scholar
     

  • Hahnemann ML, Kraff O, Orzada S, et al. T1-Weighted contrast-enhanced magnetic resonance imaging of the small bowel: comparability between 1.5 and seven T. Make investments Radiol. 2015;50(8):539–47.

    Article 
    PubMed 

    Google Scholar
     

  • Umutlu L, Maderwald S, Kraff O, et al. New take a look at renal vasculature: 7 tesla nonenhanced T1-weighted FLASH imaging. J Magn Reson Imaging. 2012;36(3):714–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiedler TM, Orzada S, Flöser M, et al. Efficiency and security evaluation of an built-in transmit array for physique imaging at 7 T into consideration of particular absorption price, tissue temperature, and thermal dose. NMR Biomed. 2022;35(5):e4656.

    Article 
    PubMed 

    Google Scholar
     

  • Laader A, Beiderwellen Okay, Kraff O, et al. 1.5 versus 3 versus 7 Tesla in stomach MRI: a comparative research. PLoS ONE. 2017;12(11):e0187528.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer A, Kraff O, Orzada S, et al. Ultrahigh-field imaging of the biliary tract at 7 T: preliminary outcomes of gadoxetic acid-enhanced magnetic resonance cholangiography. Make investments Radiol. 2014;49(5):346–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Umutlu L, Orzada S, Kinner S, et al. Renal imaging at 7 Tesla: preliminary outcomes. Eur Radiol. 2011;21(4):841–9.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Yang C, Liang L, et al. Preliminary expertise of 5.0 T greater subject stomach diffusion-weighted MRI: settlement of Obvious Diffusion Coefficient with 3.0 T imaging. J Magn Reson Imaging. 2022;56(4):1009–17.

    Article 
    PubMed 

    Google Scholar
     

  • Wei Z, Chen Q, Han S, et al. 5T magnetic resonance imaging: radio frequency {hardware} and preliminary mind imaging. Quant Imaging Med Surg. 2023;13(5):3222–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image evaluation. Nat Strategies. 2012;9(7):676–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Afzalpurkar S, Giri S, Kasturi S, Ingawale S, Sundaram S. Magnetic resonance cholangiopancreatography versus endoscopic ultrasound for prognosis of choledocholithiasis: an up to date systematic assessment and meta-analysis. Surg Endosc. 2023;37(4):2566–73.

    Article 
    PubMed 

    Google Scholar
     

  • Rutland JW, Delman BN, Gill CM, Zhu C, Shrivastava RK, Balchandani P. Rising Use of Extremely-high-field 7T MRI within the research of Intracranial Vascularity: state of the sector and future instructions. AJNR Am J Neuroradiol. 2020;41(1):2–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onishi H, Kim T, Hori M, et al. MR cholangiopancreatography at 3.0 T: intraindividual comparative research with MR Cholangiopancreatography at 1.5 T for medical sufferers. Make investments Radiol. 2009;44(9):559–65.

    Article 
    PubMed 

    Google Scholar
     

  • de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC. MR imaging leisure instances of stomach and pelvic tissues measured in vivo at 3.0 T: preliminary outcomes. Radiology. 2004;230(3):652–9.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng L, Yang C, Liang L, Rao S, Dai Y, Zeng M. T2-weighted MRI and reduced-FOV diffusion-weighted imaging of the human pancreas at 5 T: a comparability research with 3 T. Med Phys. 2023;50(1):344–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van de Moortele PF, Akgun C, Adriany G, et al. B(1) damaging interferences and spatial section patterns at 7 T with a head transceiver array coil. Magn Reson Med. 2005;54(6):1503–18.

    Article 
    PubMed 

    Google Scholar
     

  • Ipek Ö. Radio-frequency coils for ultra-high subject magnetic resonance. Anal Biochem. 2017;529:10–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin L, Liu P, Solar G, et al. Bi-ventricular evaluation with cardiovascular magnetic resonance at 5 Tesla: a pilot research. Entrance Cardiovasc Med. 2022;9:913707.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Z, Zhao X, Zhu S, et al. Time-of-flight intracranial MRA at 3 T versus 5 T versus 7 T: visualization of distal small cerebral arteries. Radiology. 2022;305(3):E72.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng L, Yang C, Sheng R, Dai Y, Zeng M. Renal imaging at 5 T versus 3 T: a comparability research. Insights Imaging. 2022;13(1):155.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida M, Nakaura T, Inoue T, et al. Magnetic resonance cholangiopancreatography with GRASE sequence at 3.0T: does it enhance picture high quality and acquisition time as in contrast with 3D TSE. Eur Radiol. 2018;28(6):2436–43.

    Article 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles