0.3 C
New York
Monday, January 27, 2025

CT coronary fractional move reserve based mostly on synthetic intelligence utilizing completely different software program: a repeatability examine | BMC Medical Imaging


  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, et al. Coronary heart illness and stroke statistics–2014 replace: a report from the American Coronary heart Affiliation. Circulation. 2014;129:e28-92.

    PubMed 

    Google Scholar
     

  • Sechtem U, Seitz A, Ong P, Bekeredjian R. Administration of persistent coronary syndrome. Herz. 2019;47:472–82.

    Article 

    Google Scholar
     

  • Gao Z, Wang X, Solar S, et al. Studying bodily properties in advanced visible scenes: an clever machine for perceiving blood move dynamics from static CT angiography imaging. Neural Netw. 2019;123:82–93.

    Article 
    PubMed 

    Google Scholar
     

  • Baumann S, Hirt M, Schoepf UJ, et al. Correlation of machine studying computed tomography-based fractional move reserve with instantaneous wave free ratio to detect hemodynamically vital coronary stenosis. Clin Res Cardiol. 2019;109:735–45.

    Article 
    PubMed 

    Google Scholar
     

  • Dobrić M, Furtula M, Tešić M, et al. Present standing and future views of fractional move reserve derived from invasive coronary angiography. Entrance Cardiovasc Med. 2023;10: 1181803.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujii Y, Kitagawa T, Ikenaga H, Tatsugami F, Awai Okay, Nakano Y. The reliability and utility of on-site CT-derived fractional move reserve (FFR) based mostly on fluid construction interactions: comparability with FFR based mostly on computational fluid dynamics, invasive FFR, and resting full-cycle ratio. Coronary heart Vessels. 2023;38:1095–107.

    Article 
    PubMed 

    Google Scholar
     

  • Guan X, Music D, Li C, et al. Useful evaluation of coronary artery stenosis from coronary angiography and computed tomography: angio-FFR vs. CT-FFR. J Cardiovasc Transl Res. 2023;16:905–15.

    Article 
    PubMed 

    Google Scholar
     

  • Lattice-Boltzmann interactive. Blood move simulation pipeline[J]. Int J Comput Help Radiol Surg. 2020;15(4):629–39.

    Article 

    Google Scholar
     

  • Zhai X, Amira A, Bensaali F, et al. Zynq SoC based mostly acceleration of the lattice Boltzmann methodology. Concurrency Comput Pract Exp. 2019;31(17):e5184.1-e5184.10.

    Article 

    Google Scholar
     

  • Xiaojun Z, Minsi, et al. Heterogeneous system-on-chip-based Lattice-Boltzmann visible simulation system. IEEE Syst J. 2019;14(2):1592–601.

  • Bray JJH, Hanif MA, Alradhawi M, et al. Machine studying purposes in cardiac computed tomography: a composite systematic assessment. Eur Coronary heart J Open. 2022;2:oeac018.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tesche C, De Cecco CN, Baumann S, et al. Coronary CT angiography-derived fractional move reserve machine studying algorithm versus computational fluid dynamics modeling. Radiology. 2018;288:64–72.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Qiu H, Hou Z, et al. Further worth of deep studying computed tomographic angiography-based fractional move reserve in detecting coronary stenosis and predicting outcomes. Acta Radiol. 2022;63:133–40.

    Article 
    PubMed 

    Google Scholar
     

  • Itu L, Rapaka S, Passerini T, et al. A machine-learning strategy for computation of fractional move reserve from coronary computed tomography. J Appl Physiol. 2016;121:42–52.

    Article 
    PubMed 

    Google Scholar
     

  • Li S, Nunes JC, Toumoulin C, et al. 3D Coronary Artery Reconstruction by 2D movement compensation based mostly on mutual Info. Irbm. 2018;39(1):69–82.

    Article 
    CAS 

    Google Scholar
     

  • Mark DB, Berman DS, Budoff MJ, ACCF / ACR / AHA / NASCI / SAIP / SCAI / SCCT, et al. 2010 skilled consensus doc on coronary computed tomographic angiography: a report of the American School of Cardiology Basis Activity Pressure on Knowledgeable Consensus paperwork. Catheter Cardiovasc Interv. 2010;76:E1-42.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Z, Contijoch F, Schluchter A, et al. Exact measurement of coronary stenosis diameter with CCTA utilizing CT quantity calibration. Med Phys. 2019;46:5514–27.

    Article 
    PubMed 

    Google Scholar
     

  • Cury RC, Leipsic J, Abbara S, et al. CAD-RADS™ 2.0–2022 Coronary Artery Illness – Reporting and Information System: An skilled consensus doc of the Society of Cardiovascular Computed Tomography (SCCT), the American School of Cardiology (ACC), the American School of Radiology (ACR) and the North America Society of Cardiovascular Imaging (NASCI). J Am Coll Radiol. 2022;19:1185–212.

    Article 
    PubMed 

    Google Scholar
     

  • Mohtasebi M, Bayat M, Ghadimi S, et al. Modeling of neonatal cranium improvement utilizing computed tomography photographs. IRBM. 2020. https://doi.org/10.1016/j.irbm.2020.02.002.

    Article 

    Google Scholar
     

  • Balasubramanian Okay, Ananthamoorthy NP. Sturdy retinal blood vessel segmentation utilizing convolutional neural community and assist vector machine. J Ambient Intell Humaniz Comput. 2019. https://doi.org/10.1007/s12652-019-01559-w.

    Article 

    Google Scholar
     

  • Belderrar A, Hazzab A. Actual-time estimation of hospital discharge utilizing fuzzy radial foundation perform community and digital well being file information. Int J Med Eng Inf. 2021;13(1):75.


    Google Scholar
     

  • Re-routing medication to. Blood mind barrier: a complete evaluation of machine studying approaches with fingerprint amalgamation and information balancing. IEEE Entry. 2023;11:9890–906.

    Article 

    Google Scholar
     

  • Ansari MY, Yang Y, Meher P, et al. Dense-PSP-UNet: a neural community for quick inference liver ultrasound segmentation. Comput Biol Med. 2022;153:106478.

    Article 
    PubMed 

    Google Scholar
     

  • An Z, Tian J, Zhao X, et al. Machine learning-based CT angiography-derived fractional move reserve for prognosis of functionally vital coronary artery illness. JACC Cardiovasc Imaging. 2023;16:401–4.

    Article 
    PubMed 

    Google Scholar
     

  • Xue J, Li J, Solar D, et al. Useful analysis of intermediate coronary lesions with built-in computed tomography angiography and invasive angiography in sufferers with secure coronary artery illness. J Transl Int Med. 2022;10:255–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang ZQ, Zhou YJ, Zhao YX, et al. Diagnostic accuracy of a deep studying strategy to calculate FFR from coronary CT angiography. J Geriatr Cardiol. 2019;16:42–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Wang H, Chen Q, et al. Coronary artery calcium rating quantification utilizing a deep-learning algorithm – ScienceDirect. Clin Radiol. 2020;75:e23711-23716.

    Article 

    Google Scholar
     

  • Tesche C, Grey HN. Machine studying and deep neural networks purposes in coronary move evaluation: the case of computed tomography fractional move reserve. J Thorac Imaging. 2020;35(Suppl 1):S66-71.

    Article 
    PubMed 

    Google Scholar
     

  • Zhai X, Eslami M, Hussein ES, et al. Actual-time automated picture segmentation approach for cerebral aneurysm on reconfigurable system-on-chip. J Comput Sci. 2018;27(JUL):35–45.

    Article 

    Google Scholar
     

  • Ansari MY, Yang Y, Balakrishnan S, et al. A light-weight neural community with multiscale characteristic enhancement for liver CT segmentation. Scientific Reviews, Nature. 2022;12:14153.

    Article 
    CAS 

    Google Scholar
     

  • Xu PP, Li JH, Zhou F, et al. The affect of picture high quality on diagnostic efficiency of a machine learning-based fractional move reserve derived from coronary CT angiography. Eur Radiol. 2020;30:2525–34.

    Article 
    PubMed 

    Google Scholar
     

  • Xu X, Wu R, Zhang W, Ding G, Xie J, Huang L, Liu L, Chi M. Multi-Function Fusion Methodology for Figuring out Carotid Artery Susceptible Plaque. Innovation and analysis in biomedical engineering: IRBM. 2022;43(4):272–8.


    Google Scholar
     

  • Gordic S, Husarik DB, Desbiolles L, Leschka S, Frauenfelder T, Alkadhi H. Excessive-pitch coronary CT angiography with third era dual-source CT: limits of coronary heart fee. Int J Cardiovasc Imaging. 2014;30:1173–9.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Wei D, Li D, et al. The worth of 16-cm wide-detector computed tomography in coronary computed tomography angiography for sufferers with excessive coronary heart fee variability. J Comput Help Tomogr. 2018;42:906–11.

    Article 
    PubMed 

    Google Scholar
     

  • Cohen ME, Pellot-Barakat C, Tacchella JM, et al. Quantitative analysis of inflexible and elastic registrations for belly perfusion imaging with X-ray computed tomography. Irbm. 2013;34(4–5):283–6.

    Article 

    Google Scholar
     

  • Ondrejkovic M, Salat D, Cambal D, Klepanec A. Radiation dose and picture high quality of CT coronary angiography in sufferers with excessive coronary heart fee or irregular coronary heart rhythm utilizing a 16-cm large detector CT scanner. Med (Baltim). 2022;101:e30583.

    Article 
    CAS 

    Google Scholar
     

  • Sankaran S, Kim HJ, Choi G, Taylor CA. Uncertainty quantification in coronary blood move simulations: impression of geometry, boundary circumstances and blood viscosity. J Biomech. 2016;49:2540–7.

    Article 
    PubMed 

    Google Scholar
     

  • Gonzalez JA, Lipinski MJ, Flors L, Shaw PW, Kramer CM, Salerno M. Meta-analysis of diagnostic efficiency of coronary computed tomography angiography, computed tomography perfusion, and computed tomography-fractional move reserve in useful myocardial ischemia evaluation versus invasive fractional move reserve. Am J Cardiol. 2015;116:1469–78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan RT, Miller JM, Rochitte CE, et al. Predictors of inaccurate coronary arterial stenosis evaluation by CT angiography. JACC Cardiovasc Imaging. 2013;6:963–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles