2.3 C
New York
Monday, January 27, 2025

Compressed sensing 3D T2WI radiomics mannequin: enhancing diagnostic efficiency in muscle invasion of bladder most cancers | BMC Medical Imaging


  • Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Most cancers incidence and mortality: A world overview and up to date traits. Eur Urol. 2017;71(1):96–108.

    Article 
    PubMed 

    Google Scholar
     

  • Siegel RL, Miller KD, Wagle NS, Jemal A. Most cancers statistics, 2023. Most cancers J Clin. 2023;73(1):17–48.

    Article 

    Google Scholar
     

  • Flaig TW, Spiess PE, Abern M, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, Chan Okay, Chang S, Friedlander T, et al. NCCN Pointers® insights: bladder Most cancers, Model 2.2022. J Natl Compr Most cancers Community: JNCCN. 2022;20(8):866–78.

    Article 
    PubMed 

    Google Scholar
     

  • Lenis AT, Lec PM, Chamie Okay, Mshs MD. Bladder Most cancers: a evaluate. JAMA. 2020;324(19):1980–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel VG, Oh WK, Galsky MD. Therapy of muscle-invasive and superior bladder most cancers in 2020. Most cancers J Clin. 2020;70(5):404–23.

    Article 

    Google Scholar
     

  • Xu X, Zhang X, Tian Q, Wang H, Cui LB, Li S, Tang X, Li B, Dolz J, Ayed IB, et al. Quantitative identification of nonmuscle-invasive and muscle-invasive bladder carcinomas: a multiparametric MRI Radiomics Evaluation. J Magn Reson Imaging: JMRI. 2019;49(5):1489–98.

    Article 
    PubMed 

    Google Scholar
     

  • Xu X, Liu Y, Zhang X, Tian Q, Wu Y, Zhang G, Meng J, Yang Z, Lu H. Preoperative prediction of muscular invasiveness of bladder most cancers with radiomic options on typical MRI and its high-order by-product maps. Abdom Radiol (New York). 2017;42(7):1896–905.

    Article 

    Google Scholar
     

  • Zheng J, Kong J, Wu S, Li Y, Cai J, Yu H, Xie W, Qin H, Wu Z, Huang J, et al. Improvement of a noninvasive software to preoperatively consider the muscular invasiveness of bladder most cancers utilizing a radiomics method. Most cancers. 2019;125(24):4388–98.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang L, Li X, Yang L, Tang Y, Guo J, Li D, Li S, Li Y, Wang L, Lei Y et al. Multi-sequence and Multi-regional MRI-Based mostly Radiomics Nomogram for the Preoperative Evaluation of muscle Invasion in bladder Most cancers. J Magn Reson Imaging: JMRI 2022.

  • Witjes JA, Bruins HM, Cathomas R, Compérat EM, Cowan NC, Gakis G, Hernández V, Linares Espinós E, Lorch A, Neuzillet Y, et al. European Affiliation of Urology Pointers on muscle-invasive and metastatic bladder Most cancers: Abstract of the 2020 tips. Eur Urol. 2021;79(1):82–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi SJ, Park KJ, Heo C, Park BW, Kim M, Kim JK. Radiomics-based mannequin for predicting pathological full response to neoadjuvant chemotherapy in muscle-invasive bladder most cancers. Clin Radiol. 2021;76(8):e627613–21.

    Article 

    Google Scholar
     

  • Elshetry ASF, El-Fawakry RM, Hamed EM, Metwally MI, Zaid NA. Diagnostic accuracy and discriminative energy of biparametric versus multiparametric MRI in predicting muscle-invasive bladder most cancers. Eur J Radiol. 2022;151:110282.

    Article 
    PubMed 

    Google Scholar
     

  • Hecht EM, Yitta S, Lim RP, Fitzgerald EF, Storey P, Babb JS, Bani-Baker KO, Bennett GL. Preliminary scientific expertise at 3 T with a 3D T2-weighted sequence in contrast with multiplanar 2D for analysis of the feminine pelvis. AJR Am J Roentgenol. 2011;197(2):W346–352.

    Article 
    PubMed 

    Google Scholar
     

  • Almansour H, Weiland E, Kuehn B, Kannengiesser S, Gassenmaier S, Herrmann J, Hoffmann R, Othman AE, Afat S. Accelerated Three-dimensional T2-Weighted Turbo-Spin-Echo Sequences with Interior-Quantity Excitation and Iterative Denoising within the Setting of Pelvis MRI at 1.5T: Impression on Picture High quality and Lesion Detection. Tutorial radiology 2022.

  • Hou M, Zhou L, Solar J. Deep-learning-based 3D super-resolution MRI radiomics mannequin: superior predictive efficiency in preoperative T-staging of rectal most cancers. Eur Radiol. 2023;33(1):1–10.

    Article 
    PubMed 

    Google Scholar
     

  • Iuga AI, Abdullayev N, Weiss Okay, Haneder S, Brüggemann-Bratke L, Maintz D, Rau R, Bratke G. Accelerated MRI of the knee. High quality and effectivity of compressed sensing. Eur J Radiol. 2020;132:109273.

    Article 
    PubMed 

    Google Scholar
     

  • Feng L, Benkert T, Block KT, Sodickson DK, Otazo R, Chandarana H. Compressed sensing for physique MRI. J Magn Reson Imaging: JMRI. 2017;45(4):966–87.

    Article 
    PubMed 

    Google Scholar
     

  • Ueno Y, Takeuchi M, Tamada T, Sofue Okay, Takahashi S, Kamishima Y, Hinata N, Harada Okay, Fujisawa M, Murakami T. Diagnostic accuracy and interobserver settlement for the Vesical Imaging-Reporting and Knowledge System for muscle-invasive bladder Most cancers: a Multireader Validation Research. Eur Urol. 2019;76(1):54–6.

    Article 
    PubMed 

    Google Scholar
     

  • Panebianco V, Narumi Y, Altun E, Bochner BH, Efstathiou JA, Hafeez S, Huddart R, Kennish S, Lerner S, Montironi R, et al. Multiparametric magnetic resonance imaging for bladder Most cancers: growth of VI-RADS (Vesical Imaging-Reporting and Knowledge System). Eur Urol. 2018;74(3):294–306.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Xu X, Zhang X, Liu Y, Ouyang L, Du P, Li S, Tian Q, Ling J, Guo Y, et al. Elaboration of a multisequence MRI-based radiomics signature for the preoperative prediction of the muscle-invasive standing of bladder most cancers: a double-center research. Eur Radiol. 2020;30(9):4816–27.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng Z, Xu F, Gu Z, Yan Y, Xu T, Liu S, Yao X. Integrating multiparametric MRI radiomics options and the Vesical Imaging-Reporting and Knowledge System (VI-RADS) for bladder most cancers grading. Abdom Radiol (New York). 2021;46(9):4311–23.

    Article 

    Google Scholar
     

  • Li G, Li L, Li Y, Qian Z, Wu F, He Y, Jiang H, Li R, Wang D, Zhai Y, et al. An MRI radiomics method to foretell survival and tumour-infiltrating macrophages in gliomas. Mind. 2022;145(3):1151–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng Z, Li H, Liu Q, Duan J, Zhou W, Yu X, Chen Q, Liu Z, Wang W, Rong P. CT Radiomics to foretell macrotrabecular-massive subtype and Immune Standing in Hepatocellular Carcinoma. Radiology. 2023;307(1):e221291.

    Article 
    PubMed 

    Google Scholar
     

  • Chen YD, Zhang L, Zhou ZP, Lin B, Jiang ZJ, Tang C, Dang YW, Xia YW, Track B, Lengthy LL. Radiomics and nomogram of magnetic resonance imaging for preoperative prediction of microvascular invasion in small hepatocellular carcinoma. World J Gastroenterol. 2022;28(31):4399–416.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Xu X, Yin L, Zhang X, Li L, Lu H. Relationship between Glioblastoma Heterogeneity and Survival Time: an MR Imaging texture evaluation. AJNR Am J Neuroradiol. 2017;38(9):1695–701.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Xu X, Tian Q, Li B, Wu Y, Yang Z, Liang Z, Liu Y, Cui G, Lu H. Radiomics evaluation of bladder most cancers grade utilizing texture options from diffusion-weighted imaging. J Magn Reson Imaging: JMRI. 2017;46(5):1281–8.

    Article 
    PubMed 

    Google Scholar
     

  • Wu S, Zheng J, Li Y, Yu H, Shi S, Xie W, Liu H, Su Y, Huang J, Lin T. A Radiomics Nomogram for the preoperative prediction of Lymph Node Metastasis in bladder Most cancers. Clin most cancers Analysis: Official J Am Affiliation Most cancers Res. 2017;23(22):6904–11.

    Article 
    CAS 

    Google Scholar
     

  • Wu S, Zheng J, Li Y, Wu Z, Shi S, Huang M, Yu H, Dong W, Huang J, Lin T. Improvement and validation of an MRI-Based mostly Radiomics signature for the preoperative prediction of Lymph Node Metastasis in bladder Most cancers. EBioMedicine. 2018;34:76–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang S, Track M, Zhao Y, Xu S, Solar Q, Zhai G, Liang D, Wu G, Li ZC. Radiomics nomogram for preoperative prediction of progression-free survival utilizing diffusion-weighted imaging in sufferers with muscle-invasive bladder most cancers. Eur J Radiol. 2020;131:109219.

    Article 
    PubMed 

    Google Scholar
     

  • Wan Q, Zhou J, Xia X, Hu J, Wang P, Peng Y, Zhang T, Solar J, Track Y, Yang G, et al. Diagnostic efficiency of 2D and 3D T2WI-Based mostly Radiomics options with machine studying algorithms to Distinguish Stable Solitary Pulmonary Lesion. Entrance Oncol. 2021;11:683587.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bathala TK, Venkatesan AM, Ma J, Bhosale P, Wei W, Kudchadker RJ, Wang J, Anscher MS, Tang C, Bruno TL, et al. High quality comparability between three-dimensional T2-weighted SPACE and two-dimensional T2-weighted turbo spin echo magnetic resonance photographs for the brachytherapy planning analysis of prostate and periprostatic anatomy. Brachytherapy. 2020;19(4):484–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi MH, Lee YJ, Jung SE, Han D. Excessive-resolution 3D T2-weighted SPACE sequence with compressed sensing for the prostate gland: diagnostic efficiency as compared with typical T2-weighted photographs. Abdom Radiol (New York). 2023;48(3):1090–9.


    Google Scholar
     

  • Chen Z, Solar B, Xue Y, Duan Q, Zheng E, He Y, Li G, Zhang Z. Evaluating compressed sensing breath-hold 3D MR Cholangiopancreatography with two parallel imaging MRCP methods in fundamental pancreatic duct and customary bile duct. Eur J Radiol. 2021;142:109833.

    Article 
    PubMed 

    Google Scholar
     

  • Sakata A, Fushimi Y, Okada T, Nakajima S, Hinoda T, Speier P, Schmidt M, Forman C, Yoshida Okay, Kataoka H, et al. Analysis of cerebral arteriovenous shunts: a comparability of parallel imaging time-of-flight magnetic resonance angiography (TOF-MRA) and compressed sensing TOF-MRA to digital subtraction angiography. Neuroradiology. 2021;63(6):879–87.

    Article 
    PubMed 

    Google Scholar
     

  • Xu S, Yao Q, Liu G, Jin D, Chen H, Xu J, Li Z, Wu G. Combining DWI radiomics options with transurethral resection promotes the differentiation between muscle-invasive bladder most cancers and non-muscle-invasive bladder most cancers. Eur Radiol. 2020;30(3):1804–12.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang W, Zhang W, Li X, Cao X, Yang G, Zhang H. Predicting Tumor Perineural Invasion Standing in Excessive-Grade prostate Most cancers based mostly on a clinical-Radiomics Mannequin incorporating T2-Weighted and diffusion-weighted magnetic resonance photographs. Cancers 2022, 15(1).

  • Shin J, Website positioning N, Baek SE, Son NH, Lim JS, Kim NK, Koom WS, Kim S. MRI Radiomics Mannequin predicts pathologic full response of rectal Most cancers following Chemoradiotherapy. Radiology. 2022;303(2):351–8.

    Article 
    PubMed 

    Google Scholar
     

  • Dratsch T, Siedek F, Zäske C, Sonnabend Okay, Rauen P, Terzis R, Hahnfeldt R, Maintz D, Persigehl T, Bratke G, et al. Reconstruction of shoulder MRI utilizing deep studying and compressed sensing: a validation research on wholesome volunteers. Eur Radiol Experimental. 2023;7(1):66.

    Article 

    Google Scholar
     

  • Khanfari H, Mehranfar S, Cheki M, Mohammadi Sadr M, Moniri S, Heydarheydari S, Rezaeijo SM. Exploring the efficacy of multi-flavored function extraction with radiomics and deep options for prostate most cancers grading on mpMRI. BMC Med Imaging. 2023;23(1):195.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles