4.7 C
New York
Wednesday, November 13, 2024

Analysis of deep learning-based reconstruction late gadolinium enhancement photos for figuring out sufferers with clinically unrecognized myocardial infarction | BMC Medical Imaging


  • Thygesen Ok, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD. Fourth common definition of myocardial infarction (2018). Circulation. 2018;138:e618–51.

    Article 
    PubMed 

    Google Scholar
     

  • Weir-McCall JR, Fitzgerald Ok, Papagiorcopulo CJ, Gandy SJ, Lambert M, Belch JJF, Cavin I, Littleford R, Macfarlane JA, Matthew SZ, Nicholas RS, Struthers AD, Sullivan FM, Waugh SA, White RD, Houston JG. Prevalence of unrecognized myocardial infarction in a low–intermediate threat asymptomatic cohort and its relation to systemic atherosclerosis, Eur. Coronary heart J Cardiovasc Imaging. 2017;18:657–62.


    Google Scholar
     

  • Sugiyama T, Kanaji Y, Hoshino M, Hada M, Misawa T, Nagamine T, Teng Y, Matsuda Ok, Sayama Ok, Araki M, Usui E, Murai T, Lee T, Yonetsu T, Sasano T, Kakuta T. Relationship between unrecognized myocardial infarction and underlying coronary plaque traits on Optical Coherence Tomography. JACC Cardiovasc Imaging. 2022;15:1830–2.

    Article 
    PubMed 

    Google Scholar
     

  • Dastidar AG, Baritussio A, Garate ED, Drobni Z, Biglino1 G, Singhal P, Milano EG, Angelini GD, Dorman S, Unusual J, Johnson T. Bucciarelli-Ducci, prognostic position of CMR and traditional threat elements in myocardial infarction with nonobstructed coronary arteries. JACC Cardiovasc Imaging. 2019;12:1973–82.

    Article 
    PubMed 

    Google Scholar
     

  • Pesapane F, Codari M, Sardanelli F. Synthetic intelligence in medical imaging: risk or alternative? Radiologists once more on the forefront of innovation in medication. Eur Radiol Exp. 2018;2:35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim C, Park CH, Kim DY, Cha J, Lee BY, Park CH, Kang EJ, Koo HJ, Kitagawa Ok, Cha MJ, Krittayaphong R, Choi SI, Viswamitra S, Ko SM, Kim SM, Hwang SH, Trang NN, Lee W, Kim YJ, Lee J, Yang DH. Semi-quantitative scoring of late Gadolinium Enhancement of the left ventricle in sufferers with ischemic cardiomyopathy: bettering Interobserver Reliability and Settlement utilizing Consensus Steering from the Asian Society of Cardiovascular Imaging-Sensible Tutorial (ASCI-PT). Eur Coronary heart J Cardiovasc Imaging. 2022;23:298–307.


    Google Scholar
     

  • Cha MJ, Kim SM, Kim Y, Kim HS, Cho SJ, Sung J, Choe YH. Unrecognized myocardial infarction detected on cardiac magnetic resonance imaging: Affiliation with coronary artery calcium rating and cardiovascular threat prediction scores in asymptomatic Asian cohort. PLoS ONE. 2018;13:e0204040.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kodai Sayama M, Hoshino Y, Kanaji T, Sugiyama T, Misawa M, Hada T, Nagamine Ok, Nogami. Yun Teng, Hiroki Ueno, Kazuki Matsuda, Taishi Yonetsu, Tsunekazu Kakuta. Prognostic implications of non-infarct-related territory unrecognized myocardial infarction in sufferers with non-ST-segment-elevation acute coronary syndrome. J Cardiol. 2023;82:433–40.

    Article 
    PubMed 

    Google Scholar
     

  • Théo Pezel T, Unterseeh M, Kinnel T, Hovasse F, Sanguineti. Solenn Toupin3, Stéphane Champagne, Philippe Garot1 and Jérôme Garot. Lengthy-term prognostic worth of stress perfusion cardiovascular magnetic resonance in sufferers with out recognized coronary artery illness. J Cardiovasc Magn Reson. 2021; 23.

  • Hoshino M, Sugiyama T, Kanaji Y, Hada M, Nagamine T, Nogami Ok, Ueno H, Sayama Ok, Matsuda Ok. Taishi Yonetsu, Tetsuo Sasano, Tsunekazu Kakuta. Multimodality coronary imaging to foretell non-culprit territory unrecognized myocardial infarction in Non-ST-Elevation acute coronary syndrome. Int J Cardiovasc Imaging. 2023;39:2051–61.

    Article 
    PubMed 

    Google Scholar
     

  • Demirkiran A, Everaars H, Amier RP, Beijnink C, Bom MJ, Götte MJW, van Loon RB, Selder JL, van Rossum AC, Nijveldt R. Cardiovascular magnetic resonance strategies for tissue characterization after acute myocardial harm. Eur Coronary heart J Cardiovasc Imaging. 2019;20:723–34.

    Article 
    PubMed 

    Google Scholar
     

  • Pradella S, Mazzoni LN, Letteriello M, Tortoli P, Bettarini S, De Amicis C, et al. FLORA software program: semi-automatic LGE-CMR evaluation device for cardiac lesions identification and characterization. Radiol Med. 2022;127:589–601.

    Article 
    PubMed 

    Google Scholar
     

  • van der Velde N, Hassing HC, Bakker BJ, Wielopolski PA, Lebel RM, Janich MA, et al. Enchancment of late gadolinium enhancement picture high quality utilizing a deep studying–primarily based reconstruction algorithm and its affect on myocardial scar quantification. Eur Radiol. 2021;31:3846–55.

    Article 
    PubMed 

    Google Scholar
     

  • Flett AS, Hasleton J, Cook dinner C, Hausenloy D, Quarta G, Ariti C, et al. Analysis of strategies for the quantification of myocardial scar of differing etiology utilizing cardiac magnetic resonance. JACC Cardiovasc Imaging. 2011;4:150–6.

    Article 
    PubMed 

    Google Scholar
     

  • Zucker EJ, Sandino CM, Kino A, Lai P, Vasanawala SS. Free-breathing accelerated Cardiac MRI utilizing deep studying: validation in youngsters and younger adults. Radiology. 2021;300:539–48.

    Article 
    PubMed 

    Google Scholar
     

  • Giuseppe Muscogiuri C, Martini M, Gatti, et al. Feasibility of late gadolinium enhancement (LGE) in ischemic cardiomyopathy utilizing 2D-multisegment LGE mixed with synthetic intelligence reconstruction deep studying noise discount algorithm. Int J Cardiol. 2021;343:164–70.

    Article 
    PubMed 

    Google Scholar
     

  • Shambhu S, Koundal D, Das P, Sharma C. Binary classification of COVID-19 CT photos utilizing CNN: COVID analysis utilizing CT. Int J E Well being Med Commun. 2021;13:1–13.

    Article 

    Google Scholar
     

  • Shambhu S, Koundal D, Das P. Deep learning-based pc assisted detection strategies for malaria parasite utilizing blood smear photos. Int J Adv Technol Eng Explor. 2023;10:990–1015.


    Google Scholar
     

  • Shambhu S, Koundal D, Das P. Edge-based segmentation for correct detection of malaria parasites in microscopic blood smear photos: a novel method utilizing FCM and MPP algorithms, 2023 2nd Worldwide Convention on Sensible Applied sciences and Programs for Subsequent Technology Computing (ICSTSN), Villupuram, India, 2023, pp. 1–6.

  • Shambhu S, Koundal D. Latest traits in picture processing utilizing granular computing. Lecture Notes Electr Eng. 2020;668.

  • Shambhu S, Koundal D, Das P, Hoang VT, Tran-Trung Ok, Turabieh H. Computational strategies for automated evaluation of malaria parasite utilizing blood smear photos: current advances. Comput Intell Neurosci. 2022; 3626726.

  • Barbier CE, Themudo R, Bjerner T, Johansson L, Lind L, Ahlström H. Lengthy-term prognosis of unrecognized myocardial infarction detected with cardiovascular magnetic resonance in an aged inhabitants. J Cardiovasc Magn Reson. 2016;18:43–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheong BY, Duran C, Preventza OA, Muthupillai R, Muthupillai. Comparability of low-dose higher-relaxivity and standard-dose lower-relaxivity distinction media for delayed-enhancement MRI: a blinded randomized crossover research. Am J Roentgenol. 2015;205:533–9.

    Article 

    Google Scholar
     

  • Andrew S, Flett J, Hasleton C, Cook dinner, et al. Analysis of strategies for the quantification of myocardial scar of differing etiology utilizing cardiac magnetic resonance, JACC. Cardiovasc Imaging. 2011;4:150–6.


    Google Scholar
     

  • Chen Q, Fang S, Yuchen Y, Li R, Deng R, Chen Y, Ma D. Huimin Lin, Fuhua Yan. Medical feasibility of deep studying reconstruction in liver diffusion-weighted imaging: enchancment of picture high quality and affect on obvious diffusion coefficient worth. Eur J Radiol. 2023.

  • Ganesan AN, Gunton J, Nucifora G, McGavigan AD, Selvanayagam JB. Influence of late gadolinium enhancement on mortality, sudden loss of life and main adversarial cardiovascular occasions in ischemic and nonischemic cardiomyopathy: a scientific overview and meta-analysis. Int J Cardiol. 2018;254:230–7.

    Article 
    PubMed 

    Google Scholar
     

  • Halliday BP, Baksi AJ, Gulati A, Ali A, Newsome S, Izgi C, Arzanauskaite M, Lota A, Tayal U, Vassiliou VS, Gregson J, Alpendurada F, Frenneaux MP, Cook dinner SA, Cleland JGF, Pennell DJ, Prasad SK. Consequence in dilated cardiomyopathy associated to the extent, location, and sample of late gadolinium enhancement. JACC Cardiovasc Imaging. 2019;12:1645–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y, Yang H. Prognostic worth of LGE CMR in HCM: a meta-analysis. JACC Cardiovasc Imaging. 2016;9:1392–402.

    Article 
    PubMed 

    Google Scholar
     

  • Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM, Maehara A, Eitel I, Granger CB, Jenkins PL, Nichols M, Ben-Yehuda O. Relationship between infarct measurement and outcomes following main PCI: patient-level evaluation from 10 randomized trials. J Am Coll Cardiol. 2016;67:1674–83.

    Article 
    PubMed 

    Google Scholar
     

  • Taylor AM. The position of synthetic intelligence in paediatric cardiovascular magnetic resonance imaging. Pediatr Radiol. 2021;22:1–8.


    Google Scholar
     

  • Bustin A, Janich MA, Brau AC, Odille F, Wolff SD, Shubayev O, Stanley D, Menini A. Joint denoising and movement correction: preliminary software in single-shot cardiac MRI. J Cardiovasc Magn Reson. 2015;17:Q29.

    Article 
    PubMed Central 

    Google Scholar
     

  • Mikami Y, Kolman L, Joncas SX, Stirrat J, Scholl D, Rajchl M, Lydell CP, Weeks SG, Howarth AG, White JA. Accuracy and reproducibility of semi-automated late gadolinium enhancement quantification strategies in sufferers with hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2014;16:85–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antiochos P, Ge Y, Metal Ok, Bingham S, Abdullah S, Mikolich JR, Arai AE, Bandettini WP, Patel AR, Farzaneh-Far A, Heitner JF, Shenoy C, Leung SW, Gonzalez JA, Shah DJ, Raman SV, Ferrari VA, Schulz-Menger J, Stuber M, Simonetti OP, Kwong RY. SPINS research investigators, imaging of clinically unrecognized myocardial fibrosis in sufferers with suspected coronary artery illness. J Am Coll Cardiol. 2020;76:945–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles