Xiao AY, Tan ML, Wu LM, Asrani VM, Windsor JA, Yadav D, et al. World incidence and mortality of pancreatic illnesses: a scientific evaluate, meta-analysis, and meta-regression of population-based cohort research. Lancet Gastroenterol Hepatol. 2016;1:45–55.
Boxhoorn L, Voermans RP, Bouwense SA, Bruno MJ, Verdonk RC, Boermeester MA, et al. Acute pancreatitis. Lancet. 2020;396:726–34.
GBD 2017 Causes of Loss of life Collaborators. World, regional, and nationwide age-sex-specific mortality for 282 causes of demise in 195 nations and territories, 1980–2017: a scientific evaluation for the worldwide burden of Illness Research 2017. Lancet. 2018;392:1736–88.
Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Acute Pancreatitis classification Working Group. Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by worldwide consensus. Intestine. 2013;62:102–11.
Mikó A, Vigh É, Mátrai P, Soós A, Garami A, Balaskó M, et al. Computed Tomography Severity Index vs. different indices within the prediction of severity and mortality in Acute Pancreatitis: a predictive accuracy Meta-analysis. Entrance Physiol. 2019;10:1002.
Di MY, Liu H, Yang ZY, Bonis PA, Tang JL, Lau J. Prediction fashions of mortality in Acute Pancreatitis in adults: a scientific evaluate. Ann Intern Med. 2016;165:482–90.
Simoes M, Alves P, Esperto H, Canha C, Meira E, Ferreira E, et al. Predicting Acute Pancreatitis Severity: comparability of prognostic scores. Gastroenterol Res. 2011;4:216–22.
Gao W, Yang HX, Ma CE. The worth of BISAP rating for Predicting Mortality and Severity in Acute Pancreatitis: a scientific evaluate and Meta-analysis. PLoS ONE. 2015;10:e0130412.
Cheng T, Han TY, Liu BF, Pan P, Lai Q, Yu H, et al. Use of Modified Balthazar Grades for the early prediction of Acute Pancreatitis Severity within the Emergency Division. Int J Gen Med. 2022;15:1111–9.
Liao Q, He WH, Li TM, Lai C, Yu L, Xia LY, et al. [Evaluation of severity and prognosis of acute pancreatitis by CT severity index and modified CT severity index]. Zhonghua Yi Xue Za Zhi. 2022;102:2011–7.
Shinagare AB, Ip IK, Raja AS, Sahni VA, Banks P, Khorasani R. Use of CT and MRI in emergency division sufferers with acute pancreatitis. Abdom Imaging. 2015;40:272–7.
Spanier BW, Nio Y, van der Hulst RW, Tuynman HA, Dijkgraaf MG, Bruno MJ. Follow and yield of early CT scan in acute pancreatitis: a Dutch Observational Multicenter Research. Pancreatology. 2010;10:222–8.
Dias R, Torkamani A. Synthetic intelligence in medical and genomic diagnostics. Genome Med. 2019;11(1):70.
Li J, Zhou Z, Dong J, Fu Y, Li Y, Luan Z, et al. Predicting breast most cancers 5-year survival utilizing machine studying: a scientific evaluate. PLoS ONE. 2021;16:e0250370.
Weiss J, Kuusisto F, Boyd Ok, Liu J, Web page D. Machine studying for therapy task: bettering individualized threat attribution. AMIA Annu Symp Proc. 2015;2015:1306–15.
Weiss JC, Natarajan S, Peissig PL, McCarty CA, Web page D. Machine studying for customized drugs: predicting main myocardial infarction from digital well being data. AI Journal. 2012;33:33.
Choi HW, Park HJ, Choi SY, Do JH, Yoon NY, Ko A, et al. Early Prediction of the severity of Acute Pancreatitis utilizing Radiologic and Medical Scoring techniques with classification Tree Evaluation. AJR Am J Roentgenol. 2018;211:1035–43.
Yang Z, Dong L, Zhang Y, Yang C, Gou S, Li Y, et al. Prediction of extreme Acute Pancreatitis utilizing a call Tree Mannequin based mostly on the revised Atlanta classification of Acute Pancreatitis. PLoS ONE. 2015;10:e0143486.
Lin Q, Ji YF, Chen Y, Solar H, Yang DD, Chen AL, et al. Radiomics mannequin of contrast-enhanced MRI for early prediction of acute pancreatitis severity. J Magn Reson Imaging. 2020;51:397–406.
Qiu Q, Nian YJ, Tang L, Guo Y, Wen LZ, Wang B, et al. Synthetic neural networks precisely predict intra-abdominal an infection in reasonably extreme and extreme acute pancreatitis. J Dig Dis. 2019;20:486–94.
Xu F, Chen X, Li C, Liu J, Qiu Q, He M, et al. Prediction of a number of organ failure difficult by reasonably extreme or extreme Acute Pancreatitis based mostly on machine studying: a Multicenter Cohort Research. Mediators Inflamm. 2021;2021:5525118.
Fei Y, Hu J, Gao Ok, Tu J, Li WQ, Wang W. Predicting threat for portal vein thrombosis in acute pancreatitis sufferers: a comparability of radical foundation perform synthetic neural community and logistic regression fashions. J Crit Care. 2017;39:115–23.
Ding N, Guo C, Li C, Zhou Y, Chai X. An Synthetic neural networks Mannequin for Early Predicting In-Hospital mortality in Acute Pancreatitis in MIMIC-III. Biomed Res Int. 2021;2021:6638919.
Mofidi R, Duff MD, Madhavan KK, Backyard OJ, Parks RW. Identification of extreme acute pancreatitis utilizing a man-made neural community. Surgical procedure. 2007;141:59–66.
Chen Y, Chen TW, Wu CQ, Lin Q, Hu R, Xie CL, et al. Radiomics mannequin of contrast-enhanced computed tomography for predicting the recurrence of acute pancreatitis. Eur Radiol. 2019;29:4408–17.
Mashayekhi R, Parekh VS, Faghih M, Singh VK, Jacobs MA, Zaheer A. Radiomic options of the pancreas on CT imaging precisely differentiate practical stomach ache, recurrent acute pancreatitis, and continual pancreatitis. Eur J Radiol. 2020;123:108778.
Lan L, Guo Q, Zhang Z, Zhao W, Yang X, Lu H, et al. Classification of contaminated necrotizing pancreatitis for surgical procedure inside or past 4 weeks utilizing machine studying. Entrance Bioeng Biotechnol. 2020;8:541.
Luo J, Lan L, Peng L, Li M, Zhou X. Predicting timing of Surgical intervention utilizing recurrent neural community for Necrotizing Pancreatitis. IEEE Entry. 2020;8:207905–13.
LeCun Y, Bengio Y, Hinton G. Deep studying. Nature. 2015;521:436–44.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical picture segmentation. Medical Picture Computing and Laptop-assisted Intervention–MICCAI 2015. Springer Int Publishing. 2015;2015:234–41.
Roth HR, Shen C, Oda H, Oda M, Hayashi Y, Misawa Ok, et al. Deep studying and its utility to medical picture segmentation. Med Imaging Technol. 2018;36:63–71.
Wu S, Xu J, Tai YW, Tang CK. Deep excessive dynamic vary imaging with massive foreground motions. Proceedings of the European Convention on Laptop Imaginative and prescient (ECCV). 2017;2018:117–132.
Ansari MY, Yang Y, Balakrishnan S, Abinahed J, Al-Ansari A, Warfa M, Almokdad O, et al. A light-weight neural community with multiscale characteristic enhancement for liver CT segmentation. Sci Rep. 2022;12(1):14153.
Han Z, Jian M, Wang GG, ConvUNeXt. An environment friendly convolution neural community for medical picture segmentation. Data-based techniques. 2022.
Xie Y, Zhang J, Shen C, Xia Y. Cotr: effectively bridging cnn and transformer for 3d medical picture segmentation. 2021.
Ansari MY, Yang Y, Meher PK, Dakua SP. Dense-PSP-UNet: a neural community for quick inference liver ultrasound segmentation. Comput Biol Med. 2023;153:106478.
Jafari M, Auer D, Francis S, Garibaldi J, Chen X. DRU-net: an environment friendly deep convolutional neural community for Medical Picture Segmentation. IEEE. 2020.
Ansari MY, Abdalla A, Ansari MY, Ansari MI, Malluhi B, Mohanty S, et al. Sensible utility of liver segmentation strategies in medical surgical procedures and interventions. BMC Med Imaging. 2022;22(1):97.
Ansari MY, Qaraqe M, Righetti R, Serpedin E, Qaraqe Ok. Unveiling the way forward for breast most cancers evaluation: a essential evaluate on generative adversarial networks in elastography ultrasound. Entrance Oncol. 2023;13:1282536.
Ansari MY, Mangalote IAC, Meher PK, Meher PK, Aboumarzouk O, Al-Ansari A et al. Developments in Deep Studying for B-Mode Ultrasound Segmentation: a Complete Overview. IEEE Transactions on Rising Subjects in Computational Intelligence 8.
Du Y, Yang R, Chen Z, Wang L, Weng X, Liu X. A deep studying network-assisted bladder tumour recognition beneath cystoscopy based mostly on Caffe deep studying framework and EasyDL platform. Int J Med Robotic. 2021;17:1–8.
Haight TJ, Eshaghi A. Deep Studying algorithms for Mind Imaging: from Black Field to Medical Toolbox. Neurology. 2023;100:549–50.
Khan AA, Ibad H, Ahmed KS, Hoodbhoy Z, Shamim SM. Deep studying purposes in neuro-oncology. Surg Neurol Int. 2021;12:435.
Sarker IH. Deep studying: a complete overview on methods, taxonomy, purposes and analysis instructions. SN Comput Sci. 2021;2:420.
Lundberg SM, Lee SI. A unified method to decoding mannequin predictions. thirty first Convention on Neural Data Processing Techniques. 2017.
Meglič J, Sunoqrot MRS, Bathen TF, Elschot M. Label-set affect on deep learning-based prostate segmentation on MRI. Insights Imaging. 2023;14:157.
Li Y, Chen Q, Li H, Wang S, Chen N, Han T, et al. MFNet: Meta-learning based mostly on frequency-space combine for MRI segmentation in nasopharyngeal carcinoma. J Cell Mol Med. 2024;28(9):e18355.
Xu Z, Dai Y, Liu F, Wu B, Chen W, Shi L. Swin MoCo: bettering parotid gland MRI segmentation utilizing contrastive studying. Med Phys. 2024 Might 15.
Wang L, Luo Z, Ni J, Li Y, Chen L, Guan S, et al. Utility of U-Web community in automated picture segmentation of adenoid and airway of nasopharynx. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2023;37(8):632–636641.
Dzieniszewska A, Garbat P, Piramidowicz R. Bettering pores and skin lesion segmentation with self-training. Cancers (Basel). 2024;16(6):1120.
Zhu S, Fang X, Qian Y, He Ok, Wu M, Zheng B, et al. Pterygium Screening and Lesion Space Segmentation based mostly on deep studying. J Healthc Eng. 2022;2022:3942110.
Wang X, Girshick R, Gupta A, He Ok. Non-local neural networks. Proceedings of the IEEE Convention on Laptop Imaginative and prescient and Sample Recognition. 2018: 7794–7803.
Raghu M, Unterthiner T, Kornblith S, Zhang C. Do imaginative and prescient transformers look like convolutional neural networks. Adv Neural Inf Course of Syst. 2021;34:12116–28.
Li Z, Zhang Z, Zhao H, Wang R, Chen Ok, Utiyama M, et al. Textual content Compression-aided transformer encoding. IEEE Trans Sample Anal Mach Intell. 2022;44:3840–57.
Poudel S, Lee SW. Deep multi-scale attentional options for medical picture segmentation. Appl Comfortable Comput. 2021;109:107445.
Dakua PS. In the direction of left ventricle segmentation from magnetic resonance pictures. IEEE Sens J, 2017:1–1.
Singh AV, Chandrasekar V, Laux P, Luch A, Dakua SP, Zamboni P, et al. Micropatterned neurovascular interface to imitate the blood-brain barrier’s neurophysiology and micromechanical perform: a BBB-on-CHIP mannequin. Cells. 2022;11(18):2801.
Chandrasekar V, Singh AV, Maharjan RS, Dakua SP, Balakrishnan S, Sprint S, et al. Views on the Technological facets and Biomedical Purposes of Virus-Like Particles/Nanoparticles in Reproductive Biology: insights on the Medicinal and Toxicological Outlook. Adv NanoBiomed Res. 2022;2(8):19.
Akhtar Y, Dakua SP, Abdalla A, Aboumarzouk OM, Ansari MY, Abinahed J, et al. Danger evaluation of computer-aided diagnostic software program for hepatic resection. IEEE Trans Radiation Plasma Med Sci. 2021;PP(99):1–1.